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ABSTRACT

A procedure for predicting underground cavity motions resulting from

surface air-blast loading is developed on the basis of a dynamic-reciprocity

principle for a nonhomogeneous, anisotropic, linear, viscoelastic half

space. A computer program for evaluating the integral equations for this

medium is presented. Experimental measurements from the RAINIER

Event of Operation PLUMBBOB are used to postulate cavity motions arising

from a surface burst at the RAINIER site. The effects of variations in the

cavity pressure signature, number of measured ground motions, and

instrumentation errors are examined. Recommendations are made for

experimental programs to obtain n*eeded additional data, and, in general,

to ascertain the applicability of the reciprocity to soils.

PUBLICATION REVIEW

This report has been reviewed and is approved.

Harold S. Hamada
Lt USAF
Project Officer

THOMA . LOWR JR. PE YL. HUIE
Colonel USAF Colel USAiF
Chief, Structures Branch Chief, Research Division



CONTENTS

Page

PART I SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

I. INTRODUCTION ................................... I

II. DIGITAL PROGRAM DEVELOPMENT ........... 4

III. CAVITY DISPLACEMENT CALCULATIONS .......... 6

A. Influence of Cavity Pressure Pulse

Signature .. . . . .. . .. . .. .. . . . . . . . .. . . . . 7

B. Influence of Number of Surface Measurements . . 10

C. Influence of Errors in Surface Measurements . .. 19

D. Ground Motions Between Measured Points ........ 20

IV. CAVITY DISPLACEMENTS-AVERAGE,
DISTORTION, AND TRANSLATION ............. 20

V. SUM M ARY .......... ...................... 22

VI. RECOMMENDATIONS ........ ................ 24

PART II ANALYTICAL RESULTS

I. TRANSFORMATION OF THE RECIPROCITY
RELA TION .......... ..................... 26

II. DIGITAL PROGRAM ....................... 32

A. Ground Velocities . - .................... 32sn

B. Surface Pressures psn ................... 32

1. Arbitrary Pressure Pulse ............. 32
2. Nuclear Pressure Pulse ............... 33

C. Cavity Pressure pc ......... ............. 34

D. Integration Step Size ......................... 34

III. PROGRAM CHECKOUT ..................... 35

A. Beam Example ........................ 35

B. Integration Step Size ......................... 38

iii



CONTENTS (Continued)

Page

IV. CAVITY DISPLACEMENT CALCULATIONS .......... 41

A. Direct-Hit Example ..................... 45

1. Ground Surface Stations ............... 45
2. Ground Overpressures ................ 47
3. Influence of Cavity Pressure Signature .. ..... 47
4. Influence of Ground Surface Stations ... ....... 51

B. Nondirect-Hit Example ...... .................. 51

V. COMPARISON OF CAVITY AVERAGE
DISPLACEMENT AND DISTORTION ............. 63

APPENDIX RECIPROCITY RELATIONS IN ELASTIC AND
VISCOELASTIC WAVE PROPAGATION

I. SUM M ARY . .............................. 72

II. INTRODUCTION .......................... 72

III. DERIVATION OF EQUATIONS .................. 73

IV. GENERALIZATION TO INFINITE REGION .......... 77

%. SPECIFICATION AND APPLICATIONS ........... 77

REFERENCES ................................... 81

DISTRIBUTION ....... .. ........................... .... 83

iv



PART I -- SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

I. INTRODUCTION

The central aim of this investigation was to develop a procedure in

which ground motion data obtained during an underground explosion could

be used to predict the underground motion that would result if there was a

surface explosion at that site. Part I summarizes the work performed

during the study, while Part II presents the details.

During this study, a digital-computer program was developed which

makes it possible to compute cavity deformations caused by a specified

pressure loading on the surface of the ground. By using this program

the practicality of the proposed procedure is demonstrated and no insur-

mountable problems are anticipated in its use.

The ground motion and surface pressure pulse data needed to make

the cavity motion calculations have been taken during numerous tests and

there are no difficulties involved in using these data in the digital compu-

tations. Nevertheless, there still remains one important question to be

answered; that is, the degree of applicability of this procedure to soil

media. This can only be determined when the necessary data become

available. Now it is true that soil motions due to a transient loading, say

at point C , have been measured, say at point S. However, to test the

dynamic-reciprocity theorem in a soil, a reciprocal measurement must

be made. That is, the motion at C due to a transient loading at S should

1



be measured. Such data are not available at present, and suggestions for

a test program to gather the necessary data are outlined at the end of

this report.

The specific objectives of the present studies were formulated

and the study initiated. These four objectives were:

1) Transform the general convolution integrals in

the reciprocity theorem to forms that are

applicable to the specified problem and that

are suitable for digital computation; develop

a practical procedure for data reduction.

Z) Investigate supplementary techniques for

relating average radial displacements to

probable displacement variations around

the cavity.

3) Evaluate the limitations and possibilities of

the basic concept of dynamic reciprocity to

the specified problem; delineate possible

extensions to nonlinear and dissipative

continuous systems, and to other problems

in ground shock propagation.

4) Develop criteria for the types and accuracy

of instrumentation needed for field measure-

ment; establish reasonable estimates of

the number and distribution of measurement

stations; investigate interpolation procedures
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for estimating ground displacement

between stations.

Briefly, the work undertaken to meet the specific objectives

was as follows: First, the dynamic-reciprocity relation which is

pertinent to the problem was transformed to a form suitable for digital

computations. This relation was programmed and checked out by com-

paring the computed results against some known solutions for beams.

Calculations of cavity displacements caused by a postulated nuclear

surface detonation were then performed. Ground-motion velocity

data taken during the underground PLUMIBBOB series of tests were

used in these calculations. The underground cavity pressure which

caused these ground motions was not available; hence a set of hypo-

thetical cavity-pressure pulse curves were used. Various computer

runs were made to investigate the effect on the computed cavity

deformations caused by various cavity pressure pulse curves. The

influence of errors in the ground-station velocity measurements was

also investigated.

Since the cavity displacement calculations provide only the average

radial displacement, the relation between the average, distortional, and

rigid-body radial displacements was investigated next. Published theo-

retical results from a related problem were used to estimate the relative

magnitude of these radial displacements. The related problem was solved

by Baron and Parnes (Reference 6) and dealt with the response of a cylin-

drical cavity during the passage of a plane compressional wave. They

determined the radial and tangential velocities of the cavity boundary as a
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function of time for several points around the periphery of the cavity in

nondimensional variables. From these published results the average,

rigid body, and distortional displacement time-histories for several points

around the cavity were determined. This problem differed from the spheri-

cal cavity problem considered in this study in two respects. First, the

medium was assumed to be homogeneous, isotropic, nondissipative, and

linearly elastic; and second, the cavity was cylindrical rather than spheri-

cal. In an effort to remove the objection of a diffe.rent geometry, the

analogous problem for a spherical cavity was examined and its solution

formulated. However, the calculations of the cavity displacements re-

quired the development of another computer program. Since no numerical

computations were performed the derivation of this formal solution to the

spherical cavity problem was not included in this report but has been docu-

mented in STL Report EM 13-7.

II. DIGITAL PROGRAM DEVELOPMENT

A special form of the general dynamic-reciprocity theorer. (derived

in the Appendix), which has been transformed and programmed on the IBM

7090 so that calculations of cavity motions could be made is

Pc(t - T)Uc(T)dScdT = Ps(t - T)Us(T)dS s dt (1)f0 f c c c c J0 iSC S

where p and u represent pressure and displacement time-histories and sub-

scripts c and s refer to cavity and surface. This convolution integral re-

lation is integrated over the cavity area S and the surface area S as wellc 5

as over time. In the applications of this integral relation it is assumed

that the surface responses u caused by the cavity pressure pc have been
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measured and the cavity deformation u c caused by the specified surface

pressure ps is to be determined, Upon examination of the type of ground

motion data taken during underground explosions, it appeared that ground

velocity data ii or acceleration datai'1 were more readily obtainable thans 5

ground displacement data. It was decided, therefore, totransform (1) into

a form where the digital computations of the unknown cavity deformation

U c(t) depended upon the ground velocities Us, and the two pressure pulses

PC and pS In the computational scheme adopted, the space integration

over the ground suHace was replaced by a summation over n stations by

assuming that the variations of the integrands over each station were solely

time variations. Clearly, this requires that the spacing between stations

be small enough so that the variations of ps and i from station to station5

are not too large. From a computational standpoint this does not place any

serious restrictions upon the cavity displacement calculations since the

computer is capable of handling a large number of stations. Generally,

the upper limit to the number of surface stations will be governed by the

number of velocity time-histories that can be recorded during the under-

ground detonation. However, from the data to be presented presently, it

appears that the number of surface stations required are within the capa-

bilities of the usual instrumentation procedures.

Before the digital program could be used to make cavity deformation

calculations it was necessary to obtain surface and cavity pressures and

ground velocity time-histories. In the calculations it was assumed that

the surface pressures were caused by a surface nuclear explosion. Once

a given yield and ground zero were selected, Brode's theoretical pressure

pulse was determined for each of the n stations (References 2 and 14).

Actually, this was found to be a rather tedious task when a large number

of stations used, and therefore, an alternate method for introducing

the pressure pulse data was devised. The digital program was modified

so that an arbitrary pressure pulse curve at each station can be input.

Or alternatively, the weapon yield and the distance from ground zero to

each of the n stations are specified, then the computer generates the

appropriate Brode pressure pulse curve.
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III. CAVITY DISPLACEMENT CALCULATIONS

A search for data on ground motion caused by underground detonation

showed that a few measurements had been made on a large number of tests,

but there were no tests in which surface motions had been measured at a

large number of stations along several lines radiating out from surface

ground zero. The most complete ground motion data found were ground-

velocity data taken during the Rainier test in the PLUMBBOB series.

During this test, ground velocities were measured at seven different sta-

tions ranging from ground zero out to a range of 2340 feet. The locations

of the underground detonation and respective ground stations for these data

are shown in figure 1. The stations were very nearly on a single radial line

emanating from surface ground zero.

STATION 1 2 3 4 5 6 7

450 1 *0 0 0

650'-.-
900, - 900'-

1270' -
1730',-pc(t)2340'

PC W

Figure 1. Location of Surface Stations with Respect
to-Underground Detonation- Rainier Test

Since no ground- motion data were available to indicate the nonisotropic

nature of the medium where these data were taken, it was tacitly assumed

that the medium was isotropic, and therefore, these measured motions

were identical with those along any other radial line.

The ground-motion velocity time-histories at each of these stations are

shown in figures 7 and 8 in Part II. Unfortunately, no data were available

on the cavity pressure p that produced the ground velocities, and there-

fore, a theoretical pressure pulse was used. For the calculations, it was

assumed that the cavity pressure could be expressed in the form

pc(t) = Ae - t + Be - Pt (2)
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The peak pressure, i.e., A + B, was selected from the theoretical peak

pressure curve for various cavity radii presented in figure 8 of Reference

14 for an assumed effective radius of about 10 feet. This corresponds to

a pressure of about 100, 000 atmbspheres. The remaining three constants

in equation (2) were arbitrarily selected. These parameters were changed

in some of the computations to investigate the influence of variations in the

peak cavity pressure and decay rate.

Numerous computations were made using the ground velocity data and

cavity pressure pulses for a surface nuclear explosion having its ground

zero at one of two locations. The first location was taken as directly above

the underground cavity, and therefore, coincident with ground zero for the

underground explosion. This case is referred to as the direct-hit example.

The second location for ground zero was 1880 feet away from the ground

zero for the underground explosion. This case is referred to as the non-

direct-hit example. The conclusions drawn from these computations, and

to be presented subsequently, are not meant to be interpreted as conclusions

that are valid in general, for clearly, they are strongly dependent upon the

data used. Nevertheless, the calculations are probably indicative of a

typical situation and should provide a guide to the influence of the various

parameters. In the calculations it was assumed that the medium was iso-

tropic and, therefore, the measured velocity time-history at any station is

the same for any other station at the same distance from surface ground

zero.

A. INFLUENCE OF CAVITY PRESSURE PULSE SIGNATURE

The firstparameter studied is the influence of various cavity pressure

pulse time-histories upon the computed cavity displacements. This is an

important parameter to investigate for there is difficulty in measuring this

pressure pulse and theoretical computations are strongly dependent upon

the properties of the explosive material, cavity size, and the simplifying

assumptions. For example, see the theoretical pressure pulse curves

computed in Reference 3.

Figure 3 shows the computed cavity displacements for the direct-hit

example for the three cavity pressure pulses having peak pressures of

100, 000, 81, 625, and 61, 000 atmospheres shown in figure 2. The pressure

pulse curves were selected by initially taking the pressure pulse to be

7
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Figure 2. Assumed Cavity Pressures During the Rainier Shot
in the PLUMEBOB Series
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Figure 3. Cavity Displacements for Direct-Hit Example
Based on Cavity Pressures of Figure 2.
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PC(t) = 75, 000 e- 50t + 25, 000 e 0. 25t (3)

and then selecting new values of A, B, a, and P3 subject to the condition that

f 0  (t) dt

is a constant. Note that in figure 3, the peak cavity displacements are 1. 2,

0.75, 0. 55 ft for the three pressure pulses, pcl' Pc7' Pc8' having peak

pressures of 100,000, 81,625, and 61,000 atmospheres respectively. These

data show that if there were indeed as much uncertainty in the pressure

pulse curve as between these extremes, there would be an uncertainty of

approximately 2 to I in the computed maximum cavity displacement. This

suggests that when this procedure is applied to predict the cavity displace-

ment caused by a surface pressure, efforts should be taken to properly

define the cavity pressures.

From figare 2 note that pc 7 is a larger pressure over the first 1. 6

seconds except for the initial instant, while figure 3 shows that this cavity

pressure pulse curve leads to the smallest predicted cavity displacement.

This indicates that if one uses too large a cavity pressure, the computed

cavity displacements will be too small. Obviously, it is not necessary to

make cavity deformation calculations to note this fact for it is evident

from equation (1). If one assumes p5 and us are known functions of time,

then the right side of equation (1) is some fixed time function. Thus, if on

the left side p is too large, then u will be too small accordingly. Physi-
I C c

cally, what this means is that if a small cavity pr.essure produces a large

surface motion, then similarly a small surface pressure produces a large

cavity motion. These comments suggest that if there is any uncertainty in

the cavity pressure pulse, it is conservative to use a cavity pressure curve

that is too small.

B. INFLUENCE OF NUMBER OF SURFACE MEASUREMENTS

Several calculations were made to investigate the effect of the

number of surface stations used in the computations upon the computed

cavity deformations. One such calculation was made by using every other

surface station for the same direct-hit example used above. Adopting the

10



station numbering system shown in figure I for the direct-hit example, calcu-

lations were made by using the four stations 1, 3, 5, and 7 and the

results were compared with those when all seven stations were used. The

results of this computation are shown in figure 4. This figure shows that

the predicted cavity deformations were larger when four stations were used.

This is primarily a consequence of the manner of adjusting the surface

areas in the two sets of computations. In the four station computations, the

area associated with station I was larger than when all seven stations were

used. Now, since the surface pressure and velocity were the largest at

station 1, the contribution of station I to the total cavity deformation is

large. Therefore, increasing the area of station I increases the predicted

cavity response. This example provides an illustration of a case where the

spatial variation of the time functions was too large between stations, at

least, for those stations closest to ground zero. This does not necessarily

infer that four stations are insufficient, but it does show that if fewer sta-

tions are used and the maximum pressure and velocity occurring within the

area associated with the respective station are assumed to act over the en-

tire area, then a conservative estimate of cavity motion will be obtained.

In an effort to provide additional information regarding the number of

surface stations and the effect of instrumentation errors at these stations,

some influence functions were computed for both the direct-hit and nondirect-

hit examples. These influence functions were defined as the cavity response

caused by the surface pressures acting on each station individually. In the

results summarized here, the cavity pressure pulse given in equation (3)

was used.

The station numbering system shown in figure 1 is again used for the

direct-hit example. Figure 5 shows the maximum cavity displacement

produced by the pressures acting on each of the seven stations. Probably

it should be mentioned that these maximum cavity displacements are pro-

portional to the area lumped at each surface station as well as to the meas-

ured ground velocity and prescribed overpressure. For example, the area

lumped at station 7 was about three times that lumped at station 6. This

larger area associated with station 7 caused the influence of station 7 to

be greater than station 6. However, on an influence per unit area basis,

the influence of successive stations would clearly decrease as the distance

from the cavity to the station increased.
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Figure 4. Comparison of Cavity Displacements
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for the Direct-Hit Example
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Figure 5 is developed from the cavity motion data presented in

figures 14 and 15 of Part II. Note that figure 5 shows thatthe absolute

value of the maximum cavity displacement is 1. 21 feet while the maxi-

mum value from the first station alone is 0.78 foot. Since the maximum

cavity response caused by each surface station does not occur at the same

instant of time, the maximum cavity response is not obtained by adding the
4:

maximum values shown in figure 5. From figure 3, it is noted that the

maximum cavity displacement occurs at 0. 76 second for the pressure

pulse curve p cl' Figure 6 shows the individual contribution of each

station to this maximum cavity displacement at this instant of time. In

this figure, it is noted that the contribution from stations 4, %, 6, and 7

are small compared to the first three stations. In fact, if only the first

three stations are used, the computed cavity displacement is - 1. 14 feet,

rather than the value of -1. 21 feet when all seven stations are used. In

such a case, the computed error using the first three stations would be

about 6 percent. Recall that when the four stations 1, 3, ;, and 7 were

used, the error was approximately 70 percent. Thus, reasonable pre-

dictions of cavity displacements can be made with a limited number of

stations; however, the stations must be selected judiciously as indicated

later on.

For the nondirect-hit example, the station numbering system is shown

in figure 7. More stations are required for the nondirect-hit example than for

the direct-hit example because of the loss of some symmetry. Figure 8

shows the maximum cavity displacement caused by each individual station when

considered separately. Indicated in this figure is a resultant maximum

cavity displacement of 0. 26 foot when the properly phased contribution

from all stations is summed. Figure 9 shows the actual contribution of

each station to this maximum cavity displacement. Since the cavity motion

caused by pressures acting on some stations begins after the maximum

cavity displacement is reached, their contributions to the maximum are

zero. From figure 9, it is noted that if only the six stations, I, la, ib,

2, 2a, and 2b had been used in the analysis, the predicted maximum cavity

displacement would have been -0. 268 foot, which is very close to the

value of -0. 260 foot, when all surface stations are considered.

14



STATION NUMBER0.2-_ _ _ _ _ _ _ _ _ _ _ _ _ _1 2 3 4 .5 6 7

0

I-
LU
--- -0.2

U

-0.

z

LU
.< -0.4
-J

"< -0.6
LU0

LU

>- -0.8
I-0

U

-1.0

zUc MAX

-1.4

Figure 6. Contribution of Each Individual Station to the Total Maximum
Cavity Displacement for the Direct-Hit Example
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In both the direct-hit and nondirect-hit calculations, a fairly accurate

cavity displacement can be predicted using a limited number of surface

stations, provided that they are properly selected. The most important

stations are those stations where the major portion of the energy from the

nuclear surface detonation enters the ground, i. e., in the vicinity of ground

zero. In the calculations shown here for an isotropic medium and for the

direct-hit example reasonably accurate cavity displacements were predicted

using only three stations when full advantage of the problem symmetry is

used. For the nondirect-hit example, some synmetry was lost and fairly

accurate cavity displacements were predicted using six stations.

C. INFLUENCE OF ERRORS IN SURFACE MEASUREMENTS

Errors in measured surface velocities cause a corresponding error in

the computed cavity defornations. For example, since a linear system is

assumed, say a 10 percent error in every measured ground velocity pro-

duces a 10 percent error in the computed cavity deformation. However,

instrunientation errors may be randomly distributed so that the cancelling

effects prod -.,-e a smaller error. Figure ; can be used to estimate the

error in the, predicted cavity cleformation for a specified error in either the

surface pressure or ground velocity at any station. Clearly, the largest

error in predicted cavity deformation results from an error in the meas-

urements taken at station I . Figure 5 shows that the ratio of the contri-

bution from station I to the contribution from all the stations is approxi-

mately 0. 67/1. 21 =0. ;. Therefore, ii' 'ay Lhe surface velocity data for

station I had a constant' 10 percent err(,im, this would produce an error of

. percent in the predicted cavity deforinatiun. Computations of this type

led to the conclusion that errors in the computed cavity deformation caused

by instrumental errors in the data taken at the ground surface stations are

secondary when compared with the errors coused by the theoretical approxi-

mation to the actual pressure pulse curve, and the errors resulting by re-

placing the space-time integration of the convolution integral over the suor-

face by summation of time integration at each of the n surface stations.

These conclusions indicate that the typical accuracy obtainable in ground

motion and pressure measurements is entirely satisfactory. The accuracy

of cavity motion predictions can be improved more effectively by increas-

ing the number of surface measurements rather than by improving the

accuracy of the measurements made at a given set stations.



D. GROUND MOTIONS BETWEEN MEASURED POINTS

The possibility was examined of interpolating between stations to

determine the ground motions at some intermediate stations. Here the

hope was that fewer ground motion measurements could be made and the

accuracy of the cavity computations improved by increasing the number of

stations used in the analysis. However, it was soon apparent that no ac-

curacy could be gained by this method and one might just as well use those

stations for which data were available.

IV. CAVITY DISPLACEMENTS- AVERAGE, DISTORTION,
AND TRANSLATION

Assume ground surface velocity data are obtained from a symmetric

pressure pulse having a zero resultant force acting on an underground

cavity. If these data are used to compute cavity deformations caused by

a pressure loading on the ground surface, only average cavity deformations

can be determined by the dynamic reciprocity procedure. The fact that the

procedure provides no information regarding the cavity distortion and rigid-

body displacement is not a limitation of the dynamic-reciprocity procedure,

but rather emphasizes the fact that the cavity pressure pulse, which pro-

vided the free-surface velocity data, was symmetric and had a zero re-

sultant force. In fact, if a nonsymmetric pressure pulse having a resultant

force can be produced inside the cavity, and if the spatial and time distri-

bution of this pressure pulse is known, then '.ticse pressure pulse data and

the associated ground velocity data can be used to determine the total cavity

displacement that would result from a specified ground-surface pressure

loading. It is quite likely, however, that when this dynamic-reciprocity

procedure is applied the cavity pressure pulse will be symmetric and have

a zero resultant force. For this reason, theoretical computations were

conducted to see how the average displacement was related to the distortion

and rigid-body displacement. In this study use was made of some results

presented by Baron and Parnes in Reference 6.

Baron and Parnes determine the motion of the cylindrical cavity in the

infinite elastic medium illustrated in figure 10 during the passage of a plane

compressional wave. Presented in their work are plots of the nondimen-

sional radial velocities [w/(0c/ 4) and tangential velocity v/(Oc pi/01, as
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functions of nondimensional time (C t/2a) for seven different points around
p

the cavity, where 'v is the radial velocity, r the tangential velocity, o- the

stress intensity of the wave, p. the shear modulus of the medium, c theP

propagation velocity of the dilatational waves, a the radius of the cylindri-

cal cavity *and t the time.

WAVE SHOCK WAVE FRONT
LOCITYVELCT = c

Figure 10. Plane Compressional Wave Engulfing a

Cylindrical Cavity in an Infinite Medium

The detailed work presented in Part II consisted of integrating the

cavity velocity components to obtain the displacement components U (0, t)C

and V (0, t). Next, the displacements were expanded into a Fourier seriesc
to determine individual contributions of the average, distortional, and rigid-

body motion to the total radial displacement. This was done by representing

the cavity displacements by the equations

U (0, t) = a (t) + Z an(t) cos no
n=

cO
Vc(0, t) = - bn(t) sin nO

so that the component displacements are given by
average radial displacement = a (t)

a 1 (t) - b 1 (t)

rigid-body radial displacement = 2 cos S

al(t) - b 1 (t)

distortional radial displacement = U (0, t) - a (t) 1 -os

c c
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The results of these computations showed that the maximum displace-

ments occurred at 0 = 0. Figure II shows a plot of the three displacements

at 0 = 0, as a function of time. From this figure it is noted that the average

displacement and distortional displacement are roughly of the same magni-

tude. This suggests that, if only the average radial displacement is com-

puted, the total elastic displacement will be obtained approximately by

multiplying by a factor of two. Note that after the wave front has propagated

one diameter beyond the cavity (nondimensional time equal to two), the

cavity translational motion increases nearly at a constant rate. This con-

tinuing translational motion is a consequence of the assumption made in this

problem that the compressive stress is continually applied. Thus, as the

compressive wave front advances with a constant velocity, the entire medium

moves with a constant velocity without acceleration. However, such rigid-

body translations without distortion of the cavity shape do not cause any

stress variations.

V. SUMMARY

During this study, adynamic-reciprocityprocedure was devised and a

digital-computer program developed whereby ground-motion data taken

during an explosion in an underground cavity could be used to predict cavity

motions which would be caused by a specified pressure pulse loading on the

ground surface. This digital program wa so arranged that the data re-

quired to compute cavity motion are the pressure pulse time-history inside

the cavity, the corresponding normal velocities of the ground surface, and

the prescribed pressure loading on the ground surface. Given these data,

the computer evaluates the average radial cavity deformation time-history

that the specified surface pressure loading induces. If a nuclear detonation

is prescribed on the surface, the yield of the weapon and the distance from

ground zero to each of several surface stations can be specified and the

computer will generate the approximate Brode pressure pulse curve as is

necessary during the cavity calculations. This procedure is rigorously

valid in nonisotropic, linear viscoelastic media, and, therefore, can be

used for linear dissipative media. Even though the program was written

to use ground velocities, acceleration measurements can be used.
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The required number of ground motion measurements that must be

recorded so as to apply the dynamic-reciprocity procedure is very much

dependent upon the nature of the medium. For example, if the medium is

isotropic, measurements along one radial line are sufficient. Whereas, if

the medium is nonisotropic measurements should be made along three or

four radial lines. The number of measurements required along any radial

line should be at least 3, but from 4 to 7 or more are recommended. With

the data used in this study, it was noted that the error in the calculated

average cavity displacement was about 50 percent using only one surface

measurement and about 13 percent using three surface measurements,

when compared to the calculated average cavity displacement using seven

surface measurements.

Cavity distortions can be estimated from the average cavity displace-

ment using the results from the plane wave diffraction problem. Roughly,

the maximum distortion is about equal to the average displacement. An

alternative and more satisfactory method of estimating the cavity distor-

tion and also translation can be made using experimentally determined

transfer fun(.i ns.

VI. RECOMMENDATIONS

This study demonstrated that a practical procedure utilizing dynamic-

reciprocity relations can be used to predict the average cavity displace-

ments caused by a prescribed pressure ,niding acting on the surface, pro-

viding experimental measurements of -rounc[ motions caused by a known

average pressure acting inside the cavity are available. Although the

average radial displacement is vital to the designer of underground struc-

tures, the distortional and translational displacements are also important.

Theoretically, dynamic reciprocity provides a means for predicting total

cavity motion, including translation and distortion as well as the average

displacement caused by a hypothetical pressure acting on the surface of the

ground. However, such predictions can be made only if one knows the spa-

tial distribution of the pressure time-histories acting around the cavity

while the ground motion data are being collected. If only the average pres-

sure time-history acting in the cavity is known, then only the average

radial displacement caused by a prescribed surface loading can be predicted.

Generally the pressure distribution around the cavity will be nearly uniform

unless some clever experimental procedure is adopted.
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It is clear that requiring detailed cavity pressure loading imposes a

severe constraint upon the test procedure followed when collecting the ground

motion data. For this reason, it is desirable to remove this requirement

by adopting an alternate procedure. A more practical procedure is to use

the combined experimental-theoretical procedure which only requires the

average cavity pressure, for predicting the average radial displacement

caused by a prescribed ground pressure loading. Then, using the average

displacement, along with some additional experimental data, estimate the

distortion and translation of the cavity. To use this alternate procedure,

data are required which show the relation among the cavity average, dis-

tortional, and rigid-body displacements. Such data can be obtained most

conveniently on a linear medium using scaled models.

In the appendix, the dynamic reciprocity theorem is derived and shown

to be valid for a nonhomogeneous viscoelastic medium provided the stress-

strain relationship is linear. At the present time proof does not exist of

the validity of the reciprocity relation in a nonlinear medium. Neither is

there a proof to the contrary. Lamb, in Reference 16, states on the basis

of Lagrange's results that the restriction to linearity. may not be necessary,

but he did not elaborate on this point, and a proof is lacking.

Clearly, in many applications of dynamic reciprocity one must deal

with nonlinear media. For example, while rocks may behave elastically,

soils generally do not. It is worthwhile, therefore, to find out experi-

mentally the degree of applicability of thc uynamic-reciprocity relation-

ship to such media.

It is recommended that a simple and definitive experimental program

be initiated that will fulfill the following two objectives:

I) Gather sufficient test data to determine the relation among
cavity translation, distortion, and average displacement
in a linear medium.

2) Gather the necessary data to determine the degree of appli-
cability of dynamic reciprocity in a nonlinear medium such
as a soil.

The first objective will provide the transfer-function type of data required

for estimating cavity distortions and rigid-body translations from the aver-

age displacement for a linear medium. The second objective will make it

possible to estimate the errors in the predicted cavity displacements caused

by nonlinear effects.
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PART II -- ANALYTICAL RESULTS

I. TRANSFORMATION OF THE RECIPROCITY RELATION

A special form of the dynamic-reciprocity relation, equation (16) in

the Appendix, which is suitable for our purposes is given by

F (X , t - T)u (X T ) dTd s = f P (x, t - r)u (x, T ) dTds (1)
jS Jo c c f Jo

c s

where p is the pressure, u is the displacement, S is the area, x repre-

sents the space coordinates, and t and T are time coordinates. The

subscripts s and c represent surface and cavity respectively. The

problem becomes one of solving equation(1) for the unknown .cavity dis-

placement u caused by a specified surface pressure loading p when the

normal surface motion u has been measured due to a known cavity pres-

sure pc. To solve this integral equation, several simplifying

assumptions are introduced. First, it is realized that the ground surface

measurements will only be known at a finite number of surface stations

so that space integration over the ground surface must be replaced by a

summation over the n measured stations. It is assumed that at each of

these n stations, both the pressure and ground motion are the same over

the entire station area at any instant of time. It is further assumed that

the internal pressure p c acting on the cavity wall is uniformally distri-

buted and simply varies with time. Under this assumption u c becomes

the average radial cavity displacement produced by the ground surface

pressure loading p s. It is also assumed that the variation of the cavity

area with time can be neglected and that this area can be taken as a con-

stant. These assumptions permit equation (1) to be rewritten as

Sc Pc (t - T)U c(T) dT =S Fsn Psn(t - T)U sn(T) dT (2)
Jo, n Jo

where S represents the cavity area, S represents the ground surfacec th .sn

area of the n station and the summation is to extend over the n ground

surface stations. To cast equation (2) into a form suitable for

programming on the IBM 7090, it is necessary that several algebraic

manipulations be performed.
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Due to the symmetry property of the convolution integral, equation (2)

i-nay be rewritten as

tPc(t u U(T) doT

Sc - T) U = S pSn(T) U (t - T) dT (3)
Sn sn

After equation (3) is differentiated with respect to time t, it becomes

sf r ( - T) c (T) dT + S p (0) u(t)
Jo

tSn Ps (T) " (t-T) dTi + S P (t)u (0) (4)

n, sn sn sn sn sn

where dots denote differentiation with respect to the independent variable

of the functions. It is assumed that the initial displacements at the ground

surface us (0) are zero so that the last term in equation (4) vanishes.

Then, applying the symmetry property of the convolution integral and

solving equatiun (4) for the average radial displacement of the cavity

boundary gives

t rt__ 1 -__t -_ 1 t

Uc(t)- Sc c(0) 5 ~ op ()u (t
- 

T)
d T

; 0 (T) U (t - T) dT (5)
C P(C -1,sn S1P. n c(OJO Pc( uct

In equations (4) and (5) u is the velocity uf the ground surface due to ansn

underground explosion and pc is the rate of the pressure change at the

cavity boundary during the explosion.

By examining equation (5) it is observed that the first integral contains

the known functions p and u whereas the second integral contains thesn sn

known function P and the unknown function u . It is convenient to separate

each of these two integrals into two parts. The first integral will be

separated into two parts to save computational time and the second inte-

gral into two parts to express u entirely in terms of known functions,c

thereby avoiding the iteration procedure that would be required to solve

for uc from equation (5)
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in the first integral in equation (5), it is recognized that the over-

pressure pS1 will be zero until the pressure arrives at station n at the

tifre t I. Pherefore, the lower limit in this integral can be changed

from t = 0 to t = t I. Now, in general, the pressure psn decays rapidly

after the arrival of the peak overpressure and then is followed by a more

slowly decaying pulse, especially when these pressures are caused by a

nuclear detonation. Computational time can be reduced by avoiding the

small integration step required to evaluate the contribution from the fast

decay portion by analytically integrating the fast decay portion and then

numerically integrating the remaining portion. By letting E representn

the duration of the fast decay part of p sn' the integral is replaced by an

integral covering the period from T = tn to T = tn + E and another inte-

gral for the period from T = tin + E to T = t.

The second integral is separated into two parts, covering the period

from T = 0 to T = At, and fron T = At to T = t where At represents the

timne interval selected for evaluating the cavity displacements. In this

manner, the integral from At to t contains only known functions, since

when u is being deternined at time t it will be known for all times upc

to (t - At). However, the integral fron 0 to At contains the tine portion

of u that is being deternined, so that this integral \will require further

examination. After these manipulations, equation (5) is rewritten

as

I - I r t I n + E 1

"tW i in n (T)u (t T m) d-Uct - ScP(0) -snsn s

sn p ln+ (T)U sn(t - ) dT

In n

t7Ca "
pc(0 ij i~(Tlc~t -pc+ t~u~

c(T)u (t - T) dT + ()U - T) dT (6)

For sufficiently small E , the value of ui can be considered constantn sn

during the period tln to (tIn + En) and the approximation

Usn(t T) uisn(t - tln) (7)
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is made during this period. For this period, the pressure p is

approximated by a double exponential decay equation

-a h(T-t l n )..sn - t n

p sn(T) = A e + B sn e , t n T n tIn +E n (8)

where A s, Bsn' Qsn' 13sn are constants. If equations (7) and (8) are

substituted into equation (6), the first integral in equation (6) becomes

In n Ps( T)U (t - T) dT
sn t sn sn

t + E 
n 1 -s I(-tl +) -1 snT( -tI n  dT

S 'n s snn sn itl
(9)

which upon integration gives

tn nS Ps(r)us(t - T) dr.
sn sn sn

sn s (t I sn / n s -3s nS u t - t 1 ) - h .-  1, - e + --[S n - e (1 0 )

In a similar manner, it is assumed that the cavity pressure p c can

be represented by a double exponential decay equation during the time

interval from 0 to At. Thus, p is taken as

C(1 T , P 3 T
p (T) =A c e c + i-B e 0 "T <A t (11)

C c c

where again A B . a and p are constants. Previously, it was pointed

c c c c
out that when u is being determined at time t. u c will be known for the

entire period from 0 to (t - At) so that the last integral in equation (6)

involves an integration of known functions. However, the third integral

in equation (6) concerns that period of time for which uc is not yet known.

To circumvent this difficulty and express this integral in terms of the
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values Of u at the beginning and end of time interval 0 - T -- At, another
C

approximation is introduced. The approximation is made that the varia-

tion in u (T) which represents the function u (t - T) in the interval 0 LL T

At can be expressed by the parabola

U (T) = a¥ " + bT + c 0- At At- (1)

subjected to the conditions:

at T 0 u C(T) = uci (13)

L 0 u = ci (14)

T At , u (T) - u (t) (15)
C C

where u c. the radial displacement of the cavity at the end of the previous

time interval (t - At) and u ci = the radial velocity of the cavity at the end

of the previous time interval (t - -At). By imposing these conditions,

equation ( 12) becomes

[u (t) - ' L l

U (-) uc ci ci - U. Ui (16)
(At) "

and the function u (t - T) isc

T 0 c (t) - u. C u (7u (t - T) -- c i (At -T)- + Uc(At -T) + U.
c (At) 2  A tc ci
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Then the third integral of equation (6) may be written as

P C (-r)U (t -T) dT

C _( *0

_ u (t) + C (At -T)p C(T) dT
C Cx (0)(At)2  0

p /u (0)\ Att
- (At)\A 0 A ~()d

ru u.
+(0) J T dr + (0 CA)(18)

+ 0 (T PCO ~(

wvhere the procedure of integrationi by parts has been used.

Finally, by introducing equations (10), (1 1), and ( 18) into equation (6),

the cavity displacement u c becomes

At2
C CI CI [A C A Bc -13 At

-t) u.+ At + ± i At I, + C c 13 cAt-

CC

S L AK: (1- 1 E B s ~

(rn (t -_

+ [tl n+ En sn sn (t T) dTj~ ~ p c(T)U c(t -T) dT

N

u (At) - . '- e Qct) - (I Uc c+~ J
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II. DIGITAL PROGRAM

An IBM 7090 digital program was developed to solve equation (19)

for the cavity radial motion u . To use this program, the velocity and

pressure data must first be introduced into the computer. Some of the

methods of introducing these data and several other salient points will

be discussed next before presenting computed results.

A. GROUND VELOCITIES 1

sn

The digital program is so arranged that ground velocity data meas-

ured normal to the ground surface and caused by an underground explosion

are used. These data are input into the computer in tabular form, that is.

the measured velocities at a discrete set of times. If ground acceleration

or displacement data are recorded during the underground explosion, it

will be necessary to integrate or differentiate such data to derive the

corresponding velocity data before they are introduced into the computer.

Clearly, acceleration data are preferable to displacement data to avoid

any loss of aCuracy through the differentiation process.

B. SURFACE PRESSURES p sn

The surface pressures acting on each of the n stations can be intro-

duced into the computer in one of two ways. The first method provides

a means of handling those cases where the pressure pulse signature is

completely arbitrary. The second metnud is restricted to a nuclear sur-

face detonation. This second nethod of introducing the pressure pulse

data for a nuclear detonation was developed to simplify the input procedure.

This seemed to be a worthwhile simplification because it was anticipated

that most problens to be considered will be those in which the cavity

motion must be determined for a nuclear explosion on the surface.

1. Arbitrary Pressure Pulse

The procedure for introducing the pressure pulse acting at

each of the n stations is identical to that used for the ground velocities.

That is, a tabular listing of the discrete set of times and pressures is

stored in the computer. A slight variation of this procedure can be fol-

lowed when the pressure pulse decays rapidly following the peak pressure.

In this variation, the fast-decay portion is approximated by the double
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decaying-exponential pulse as expressed by equation (8), and a tabular

listing for the remaining time interval. The analytical pressure pulse

is generated internally in the computer as required during the computa-

tions, once the constants A sn Bs, as" 13 sn' and tin are prescribed for

each station.

2. Nuclear Pressure Pulse

The overpressure acting at each of the n stations caused

by a nuclear surface detonation is also generated within the computer

once the weapon yield and the distance from ground zero to each of the

n stations are specified. This generated overpressure pulse is an approx-

imation to the theoretical overpressures derived by Brode (Reference 2).

These overpressure pulses were approximated by the double decaying-

exponential equation

p (r A S11 e Q S-n1 (T-t n ) +B 1 sn ( T-t n ), t 1IT: tIn + En (20)Psn() = c +tB ctinn

during the fi. t decay time interval and by

sn , In nn 1 T(t +E npn(7) = A' + - B' + E in nT (21)sA Ss1 ' in 11

for the subsequenL time period, where E is -eL to 0. 0i second. The

values of Asn 13 a, p t 1 , anid the corresponding primed param-

eters are internally evaluated in the computer by fitting the above two

equations to Brode's data for the specified range from ground zero and for

a nominal yield.

Once the weapon yield W and the distances R n of each

station n from ground zero are specified, the computer evaluates the

pressures p sn and arrival times tin by the following steps. First the

computer evaluates the equivalent distance RE for the nominal yield

weapon W N at which the same overpressures would be observed using

the equation (Reference 11).

R E = R (22)
E 3
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The value oi R E is then used to evaluate the constants Asn' B sn' a sn'

the corresponding primed constants and the arrival times (tlN)n for the

nominal yield weapon. Finally, the overpressures psn' acting on each

station, are computed according to equations (20) and (21) and the arrival

times at these stations from the equation

tIn = (tlN)n(W) 1(23)

C. CAVITY PRESSURE p

The cavity pressure time-history can be introduced into the computer

in one of two ways. Either:

1) Prescribe the constants A.', Bc', ac', Pc', and the computer

evaluates the pressure at any time t from the equation

PC (t) = Ac' ec + Bc' ec (24)

or

2) Prescribe the constants Ac, Bc, ac, Pc, and the computer
evaluates the pressure for the first time interval 0 toAt using
equation (11). The cavity pressures following this period
are prescribed by a tabular listing of discrete pressure and
time values.

D. INTEGRATION STEP SIZE

The integration step size can be specified in one of two ways in the

Adams-Moulton, Runge-Kutt.a method used for numerically integrating

the integrals in equation (19). Either a constant step size can be pre-

scribed, or limits placed on the truncation error allowed in any integra-

tion step. In the latter method, a variable step size is used with the

computer selecting its own step size by comparing the error introduced

at each step with the prescribed allowable error, and then, adjusting the

step size to keep the error within the specified limits.
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III. PROGRAM CHECKOUT

A. BEAM EXAMPLE

The programming of equation (1), and also the steps leading to

equation (19) from the reciprocity relation (1) were verified by computa-

tions for problems in which exact solutions were known or obtainable.

One such problem used for this purpose was the response at some point

of a simply supported beam due to transient loadings applied at three

other points.

c si s2 s3

~R3

Figure 1. Beam Geometry

Figure 1 shows the beam used for this check where the three loading

points are sI, s2, s3 and the response is determined at point c. In order

that this problem can bear some resemblance to the half space problem

to be considered later, the loadings at the three points approximate a

pressure pulse traveling across the beain with different arrival times

and reduced peak pressures at successive points along the beam. The

loadings selected are shown in figure 2 and are expressed mathematically as

Ps 1 (t) = P 1 H(t - tll) - P 1 2 H(t - t 12 ) - P 1 3 H(t - t 13 ).- P 1 4 H(t - t 14 )

Ps 2 (t) = P 2 IH(t - t2 1 )'- P 2 2 H(t - t2 2 ) - P 2 3 H(t - t 2 3 ) - P 2 4 H(t - t2 4 ) (25)

P's 3 (t) = P 3 1H(t - t 3 1) - P 3 2 H(t - t 3 2 ) - P 3 3 H(t - t 3 3 ) - P 3 4 H(t - t 3 4 )

where H(t) is the Heaviside unit step function.
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It is found by analysis that these loadings produce a displacement at point c

given by

1 rni mrh .m7TR rr
Uc(t) = 7- - sin - sin n - cosW m(t- tnl H(t-tn)

n=1 m=I Mwlm

- P nz1- cos m(t - tn2 )]H(t -tn)- P n3 l - cos W rn(t - tn3 H(t - tn3)

Pn4 - cos W m(t- tn 4 )] H(t tn4)} (26)

Now, to apply equation (19) to find u , the velocity at the three

stations must be determined for a known loading at point c. The loading

chosen to be applied at point c is shown in figure 3

t)

z
D Pc1
0

Pc 2

Sc3

< tc2 tc3

TIME, t, (SECONDS)

Figure 3. Loading at Point c

and is expressed mathematically as

Pc(t) = PclH(t - tcl) -Pc2 H(t - tc 2) - Pc3H(t - t 3 ) (27)

The velocities at points s caused by the loading I equation (2 7 )j are
n

found analytically to be

0t 1 . m Trh nP sin t tt

U (t)  '- sin --- sin- - [ cl (t -  -
sn LVW ci m tcl ~tcim=1 m

Pc2 sinw m (t- tc 2 )H(t- tc 2 ) - Pc3 sinw rm(t - tc3)H(t - tc3 )  (28)
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for n = 1, 2, 3. These velocities were evaluated for the modes m = I to 7

and are shown in figure 4. The velocity time-history data and the pressure

loadings Psn and pc were introduced into the compuiter and uc determined

with a constant integration step size of 0. 05 second.

For these computations, the following values were used:

El I R 23- 4 -T54 0.7M 3 25ir 4

2 R
- m 0.8

M = 30 lb/in tcl = 0 sec Pcl = 14 lb

h
h 0.25 tc2 = 2.0 sec Pc2 = 8 lb

i- 2

-0.55 tc3 = 4.5 sec P =6 b

c3 c3

The results of these calculations are shown in figure 5 where the value

of the analytical solution of u was determined from equation (26) by

summing the terms from m = 1 to m = 7. The higher mode contributions

for m -7 for both uc and u were negligible compared to the first sevenC sn

mode contributions. Figure 5 shows that the computer solution and the

analytical solution are quite close with the maximum difference about

5 percent. These results suggested that the coding and the manipulation

of equation (1) into the form given by equation (19) were correct, and

therefore, the digital program was then used to investigate the cavity

displacements caused by surface pressure loadings.

B. INTEGRATION STEP SIZE

Several beam deflection calculations were made to investigate the

effect of the integration step size used in the digital computations. The

step size selected in any given computation depends on the data to be

integrated and the accuracy demanded. The data used in these calculations

are the loading curves shown in figure 2 and the velocity curves shown in

figure 4. It is clear that when the loading and velocity data vary rapidly,

the integration step size must be reduced accordingly provided these rapid
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fluctuations are large enough to significantly affect the final results. By

examining figure 4, it is observed that the primary velocity curve has a

rise time of about five seconds while the individual fluctuations have a

minimum rise time of about 0. 1 second. The discontinuities in the load-

ing curve shown in figure Z also give rise to higher frequency fluctuations

(this would be evident if the loading curve is replaced by its Fourier series

expansion). Several calc'ulations were made using various integration step

sizes. Figure 6, which shows th6 results for integration step sizes of

0. 05 and 0. 5 second, indicates that the difference between the two pre-

dicted deflections at t = 5. 5 seconds is about 10 percent. Figure 5 shows

that the deflection computed by using 0.05 second step size agrees fairly

well with the exact deflection, so that the integration step size of 0. 05

second is entirely satisfactory, and even the 0. 5 second step size is

probably adequate in this problem.

IV. CAVITY DISPLACEMENT CALCULATIONS

To compute the average cavity radial displacem~ent caused by a pre-

scribed pressure acting on the ground surface, it is necessary to know

the ground motions caused by a known underground cavity pressure load-

ing. The most nearly complete ground motion data that could be found

were ground velocity measurements obtained during the Rainier shot in

the PLUMBBOB series (Reference 22). These data consist of seven

surface measurements that are nearly on one radial line extending from

surface ground zero out to a distance of 2340 feet. Figures 7 and 8 show

these data for the stations at distances of 0, 450, 650, 900, 1270, 1730,

and 2340 feet from surface ground zero. The cavity pressures that gave

rise to these ground motions were not recorded during the test and there-

fore, a pressure pulse must be assumed. Reference 14 indicates that

the cavity radius before the shot was 3 feet and after the explosion, the

crushed radios before collapse was 55 feet. For the calculations

which follow an effective radius of 10 feet will be assumed. For

this radius, the cavity area S is 1200 square feet. Figure 8 inc

Reference 14 shows the theoretical peak pressure inside the cavity as

a function of cavity radius. For the cavity radius of 10 feet, the peak

pressure is about 100, 000 atmospheres. In the following calculations,
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it is assumed that the pressure pulse has a zero rise time to the maximum

pressure and then decays exponentially as described by equation (24). One

pressure pulse used for many of the calculations to follow was taken as

-5ot -0.25t (29)
PC = 75, 000 e + 25, 000 e

With these ground velocity data and cavity pressure pulse, the average

cavity response was computed for a nuclear surface detonation at one of

two locations. These two cases are called the direct-hit and nondirect-

hit examples.

A. DIRECT-HIT EXAMPLE

For the direct-hit example, it is assumed that a nuclear detonation

occurs on the surface with its ground zero coinciding with the surface

ground zero for the underground detonation. Brode's theoretical over-

pressures (Reference 2) are used for the overpressures acting on each

of the ground stations, and are axisymmetrical about the ground zero

location.

1. Ground Surface Stations

It is assumed that the medium is isotropic and homogeneous so

that the recorded velocities during the underground explosion would have

been the same if they had been measured along any other radial line from

surface ground zero. Since both the ground pressures ps and ground

velocities u are symmetric about ground zero, the surface areas usedS

in the solution of equation (19) are the ring shaped areas around ground

zero indicated in figure 9. These surface areas are listed in table 1.

Table 1. Station Areas in the Direct-Hit
Example Using 7 Stations

Station Area
n ft 2

1 159.4
2 791, 300
3 936,600

4 1,811,000
5 3,370, 000
6 5,941,000

7 14,330,000
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Figure 9. Lumped Stations for the Direct-Hit Example
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2. Ground Overpressures

Since Brode's theoretical overpressure is infinite at ground zero,

the first ground station was arbitrarily moved out to a point 150 feet from

ground zero. The overpressure used at this first station is that corre-

sponding to Brode's overpressure at a range of 150 feet, whereas the

ground velocity used there is the actual velocity recorded at surface

ground zero. The overpressure data for the fastdecayportionwere com-

puted from equation (20) using the values listed in table 2. For the re-

maining period, the overpressures were input into computer in tabular

form by reading overpressure and time values from the overpressures

shown in figure 10.

Table 2. Overpressure Constants Used in equation (20)

Station A nB a sn 1  In
n atmos atmos sec sec sec

1 97, 500 2500 .6000 250 0.01
2 2,bOO 800 1500 195 0.007
3 Q00 200 520 200 0. 0035
4 320 80 420 25 0. 0045
5 120 10 120 20 0. 01
6 40 19 70 10 0.02
7 17 7.4 31 5 0.076

3. Influence of Cavity Pressure Signature

Since there is considerable uncertainty in the cavity pressure

pulse, calculations were made using various pressure pulses so that the

influence of the cavity pressure signature could be observed. The basic

pressure pulse is taken as that expressed in equation (29). Other pulses

are selected arbitrarily subject to the constraint condition.

fo 0 pc(T) dT = constant

Figure 12 shows the computed average cavity displacements caused by the

nuclear explosion on Station I for the five cavity pressures shown in

figure 11.
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4. Influence of Ground Surface Stations

In order to estimate the effect of using a fewer number of stations

while computing cavity displacements, calculations were made using every

other station shown in figure 9, i. e. , stations 1, 3, 5, and 7. The adjusted

surface areas for this case are shown in table 3.

Table 3. Station Areas for the Direct-Hit
Example Using Four Stations

Station Area
n 103 ft 2

1 332
3 2, 560

5 7, 340
7 15, 700

The results of these calculations are shown in figure 13 where the p cl

curve given by equation (29) was again used. In figure 13 it is noted that

this four-station lumping predicts a larger cavity motion. This is pri-

marily a consequence of the increased area used for station I in the four-

station computations.

Figures 14 and 15 show the results of another set of calculations

made to investigate the influence of each surface station. These curves

were computed by using all seven stations shown in figure 9. Each curve

on figures 14 and 15 shows the cavity motion caused by the overpressures

acting on each of the seven stations individually. For example, figure 14

shows that the maximum cavity displacement caused by the overpressure

acting on station 1 alone is -0. 75 foot, whereas figure 12 shows the maxi-

mum to be - 1. 21 feet when the properly phased contributions from all

seven stations are considered.

B. NONDIRECT-HIT EXAMPLE

The nondirect-hit example is defined as one in which the location of

the surface nuclear detonation does not coincide with the surface ground

zero for the underground explosion. In this example, it is assumed that

a surface burst having the same yield as in the direct-hit example takes

place at a point 1880 feet from surface ground zero. Once again, Brode's

51



2.0 f

1.6

STATION 1, 3, 5, 7

1.2 _ _

,STATION 
1 THOUIGH 7

0.8

, 0,4

z

U

-0S-0.4

0

-1.2

-1.6

-2.0
0 0.2 0.4 0.6 0.8 1.0 1.2

TIME (SECONDS)

Figure 13. Comparison of Cavity Displacements Using Four
and Seven Stations

52



0.8_

0.6 -
STATION 1

0.4 1

.. STATION 2
U /STATION 3

0.2 -
z
LUI-)

-j

<

< -0.2

> -0.4 </

-0.6 _____ __-

-0.8
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

TIME (SECONDS)

Figure 14. Influence Coefficients-Cavity Displacements Caused by
Surface Pressure Loadings Acting on Stations 1, 2, and 3
for the Direct-Hit Example

53



10

z 00
-4J

U LO
o , o

z Q~
Lo ' L u 4

'-4 1

0'

4. 0

z/ It0 4

0 w

00 H

0 r.0

(1~d '1NV~JV~dSG 1VGV~ JOVflA

54



theoretical overpressures are used for the psn data and the Rainier

ground velocities for the 6 sn data. The cavity pressure signature used

is given by equation (29) and denoted by pc I

For these calculations, the 38 stations shown in figure 16 are used.

Note that even though the surface overpressure has symmetry about ground

zero for the surface detonation and the ground velocities have symmetry

about the surface ground zero for the underground explosion, the products

of the overpressures and velocities only have symmetry about the line

passing through the two ground zero locations. Thus, when full advantage

is taken of this symmetry, the cavity motion caused by the surface pres-

sures acting on all 38 stations can be determined by using the 26 stations

1, la, ib, . . . , 20, and2 . However, this is considerably more than was

required for the direct-hit example. Table 4 lists the geometrical data

required in these calculations. Shown in the table are the areas of each

of the different 26 stations, the distance from surface ground zero for

the underground explosion to the respective station, and the distance from

the surface burst to each station.

The cavity-displacement calculations made using the above data are

summarized in figures 17 to 21 in the form of influence curves. That

is, each curve shows the cavity motion caused by the overpressure acting

on each of the stations individually. The total cavity motion caused by

the pressures acting on all the stations is obtained from the sum of these

individual curves.

These figures can be used to compare the relative importance of

those stations where the surface pressures are the largest with those

where the ground velocities are the largest. For example, compare the

effect of station 2 where the surface explosion acts with that of the four

stations around surface ground zero for the underground explosion. Even

though table 4 shows that the area of station 2 is approximately equal to

the total area of the four stations, figures 17, 18, and 19 show that the

effect of station 2 is about twice as large as the combined effect of the four

stations surrounding surface ground zero. Thus in this example the larg-

est contribution to the cavity displacements comes from the stations

around ground zero where the ground overpressures are the largest.
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Table 4. Geometrical Parameters for the Nondirect-Hit Example

Distance From
Station Underground Distance From

Station Area Explosion Surface Burst
No. ft 2 x 103 Ground Zero (ft) Ground Zero (ft)

1 398 2340 460

la 597 2340 660

lb 995 2340 1270

2 165 1730 150

2a 248 1730 415

2b 413 1730 1030

3 281 1270 610

3a 281 1270 1010

4 453 900 980

5 234 650 1230

6 198 450 1430

7 39.8 150 1730

8 39.8 150 2030

9 198 450 2330

10 234 650 2530

11 453 900 2780

12 843 1270 3150

13 1485 1730 3610

14 3582 2340 4220

15 39.8 150 1880

16 198 450 1930

17 234 650 1990

18 453 900 2080

19 843 1270 2270

20 1485 1730 2560

21 3582 2340 3010
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V. COMPARISON OF CAVITY AVERAGE
DISPLACEMENT AND DISTORTION

Even though the average cavity displacement caused by a specified

nuclear burst on the surface is of vital interest, cavity distortions are

also important. The numerical procedure used in the examples only

predicts the average cavity displacement. This section examines a

theoretical problem in which the average displacement and distortion

are computed to investigate the relative magnitude's of each of these

types of displacements. The calculations of average displacement and

distortion and also rigid-body translation, are determined from some

published results of Baron and Parnes (Reference 6). Baron and Parnes

find the motion of a cylindrical cavity during the passage of a plane com-

pressional wave. They assume that the medium is homogeneous, iso-

tropic, and elastic with a Poisson's ratio of 1/4 which corresponds to

a granite-rock medium. The plane compressional wave front has a step

distribution in time and propagates at the constant velocity of the dilata-

tional waves c in a direction normal to the generators of the cylindricalp
cavity. Figure 22 shows the geometrical relations and the points on the

cylinder surface where the radial displacements are computed.

The average and distortional radial displacements of points on the

cylindrical surface are derived from the data shown in Reference 6.

Figures 7 and 8 of Reference 6 show the radial and tangential velocities

as functions of time in terms of nondimensional coordinates ( .'/o" andp
'/G-C p versus c pt/Za) for the twelve points around the cavity 81 = 0,

0 = *22. 50, e3 = ±450, a4 = ±67. 5° , 5 = *90 ° , e6 = *135 ° , and e7 = 1800.

In these plots .w and v, represent the radial and tangential velocities re-

spectively, a- the stress intensity of the incoming wave, c the propagationp
velocity of the incoming waves, 4 the shear modulus of the medium,

t the time, and a the cavity radius. The radial velocity data have been

reproduced and are shown in figure 23 of this report.

Let U and V represent the nondimensional radial and tangentialc c

displacements and let these displacements be represented by the Fourier

expansions

U (0, t) = a (t) + Z a (t) cos ne (30)
n=
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0o

V c(, t) = bn(t) sin nO (31)

n=

In this notation, the nondimensional average and distortional radial dis-

placements and rigid-body translations in the radial direction can be

written as

average radial displacement = a (t) (32)0

a1 (t) - b1 (t)
rigid-body radial translation = 2 cos 9 (33)

distortional radial displacement = U(,t) - a(t) (t) - b(t) cos (34)

The average radial displacement is evaluated by numerically integrating

the data in figure 23, to obtain the Uc (0, t) shown in figure 24. Then,

a (t) is evaluated by numerically integrating the following equation
0

ao(t) = f Uc(0, t) dO (35)

and is shown in figure 25.

The rigid-body radial translation is computed from equation (33) by

using the values of (a 1 - b 1 )/2 presented in figure 10 of Reference 6.

Finally, the radial distortional displacements are calculated from equa-

tion (34) and these results are presented in figures 26 and 27. Comparing

figures 25 and 26, it is noted that the average and the maximum distor-

tional radial displacements, which occur on 9 = 0, have about the same

magnitude.
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APPENDIX

RECIPROCITY RELATIONS IN ELASTIC AND

VISCOELASTIC WAVE PROPAGATION
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I. SUMMARY

By a slight extension of Graffi's proof of the reciprocity relations

in dynamics, it is pointed out that dynamic reciprocity applies as well

to viscoelastic media and also to traveling loads.

II. INTRODUCTION

The most general reciprocal theorem in dynamics was asserted by

Horace Lamb (Reference 16) to be derivable from a remarkable formula

established by Lagrange in the "Mecanique Analytique" (1809) by way of

a prelude to his theory of the variation of arbitrary constants. Lamb

showed how the reciprocal theorems of von Helmholtz in the theory of

least action in acoustics and optics and of Lord Rayleigh in acoustics,

can be derived from Lagrange's formula. Rayleigh (Reference 21) extends

the reciprocal theorem to include the action of dissipative forces and

Lamb shows the complete reciprocity relationship in a moving fluid with

reversed flow conditions. These theorems are best stated and proved in

terms of generalized coordinates.

In the theory of static elasticity, a well known reciprocal theorem

is associated with the names of Maxwell, Betti, and Rayleigh. A generali-

zation of this theorem to dynamic problems in elasticity is given by Graffi

(References 12 and 13), and certain applications of Graffi's results to the

problem of elastic wave propagation, in particular, of the reciprocity

between certain results of Pekeris' problem (Reference 19) of a suddenly

applied vertical load and Chao's problem (Reference 7) of a suddenly

applied horizontal load, was pointed out by Di Maggio and Bleich (Refer-

ence 9). However, there seems to have been no mention in the literature

about reciprocity relations that hold for traveling loads. It is the purpose

of this Appendix to state such a relationship, to extend it to viscoelastic

media, and to demonstrate some interesting applications.
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III. DERIVATION OF EQUATIONS

Consider a linear isotropic viscoelastic medium, which is described

by the stress-strain relationship (in the usual tensor notations)

n to an) ij = --o bndn k k 5ij +  =(o Cn d- ui, j + uj, (1)

where o-ij is the stress tensor, u. is the displacement vector, a , b , c

are constants if the medium is homogeneous, and are functions of space

coordinates if the medium is nonhomogeneous. If N = 0, the material

obeys Hooke's law and the above relationship is written

.... uw, ki + k4ui, .+u. i) (2)
G, j =kuk, k 5ij +4u j +uj,d()

where k, 4 are the Lame constants which may depend on space coordinates.

If X. is the body force per unit mass, the equation of motion is

2
d u.

1p pX + i. (3)
dt 1 13,

If the material occupies a finite volume V with a boundary surface

S = S T+ Su, surface traction being specified over S and displacement
0- U 0

being specified over S , the boundary conditions that must be satisfied areu

V

c..n. = T. on S13 1

u. : W. on S (4)
1 1 U

where n. is the direction cosine of the normal v of S. Let us consider
j V

problems in which X. (Xl, x 2 , x3; t),T i (x I , x 2 , x 3 ; t),and wi(x I, x 2 , x3;t)

are given functions of space and time, which starts its action at t Z-0,

under the initial conditions

du. dNu.
1 _ - = 0 when t S-0 (5)
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The response ui (x , x 2 , x 3 ; t) is sought. To this end, we apply Laplace

transformation with respect to the time t to every dependent variable

under the assumption of suitable continuity conditions so that the trans-

forms exist. Let the Laplace transform of u be written as u

00 st
u=a.j~~tjsz e -u(t) dt (6)

We have, on account of the initial conditions named above

- = (s)_ukk 6 ij + [1(s)(u., j + U-- ,i

2
s pu pX + a. in V

(7)
V

a-n. T. on S

u. = w. on S-1 -i u

where

X(s) n bsn/ anS , .i(s) = n/ anS (8)

When the mathematical problem is solved for u- (xI , x 2 , x 3 ; s), the

inverse transform must be performed in order to obtain the desired

solution ui (x I , x 2 , x 3 ; t).

Now consider two problems in which the applied body force and the

surface tractions and displacements are differently specified. Let the

variables involved in these two problems be distinguished by superscripts.

Then

In V s~pu i) = PX i) + 0-,i. (9a) s 2pu = pX. (2)
- -1 (-i -i -,j

On S A- : (l} (9b) a-!.A. = v(2) (lOb)a- -13 j -i -1 3 -i

On S : u ( 1)  = w(1) (9c) u (2) = w (2) (lOc)
u -- - i - i - i
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Multiplying equation (9a) by u (2) and (10a) by u subtracting, and

integrating over the volume V, we obtain

t (l1 ) u~ (2)dv + f(1)(2)d= fpx(2)(1)dv +fa'(2)JVIdv ( 1)--i -i ..V- i, f J-i

Now

~~~ ~(1) (2),1 5. nUds) + (4u ) + L 1 u 2 dv

V- j, u-i dv fR4)k1) \ -i j , ) i-

sk,k ij-1 3 j V k, k ij-i,j

+ , f u(t) (2)n ds + 4u(')u('-,d
J s -i, j - i is -J ,1-i inds

f (1) (2) r. ( 1)u(2 )dv

- _=k u, k .u, v - , , j JV -j ' i-l j+ ()(2) ds + u 1)u(2nds

-- k, n-i i J -k, k-j

ru(1)u(2)d + u (2)(nd

+V s-i, j-ui, j s J Vs j, i--i, js
+If" u(1uZ'v--i ja F u~l) z d (12)

Jv -i  3 J 11

A similar expression is obtained for the integral

f v 
-ri 2)  J l d v 

( 1 3 )

When these expressions are substituted into equation (11), we see that

a number of volume integrals cancel each other. The surface integrals

contributed by the integrals (12) and (13) to ( 1) are

S (1 I) (2 )  Lu! ()u (Z)n ds
fXu(2) ( 1n ds fu, j njds+ )

k---i i sS -* P--I
= fU({) u(.1nd + F u( 1

u n dss+ I ±Ul 2 u# ln.ds (14)

f S -k , k mi ljni 
d s  ¢ -i , j --7
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or

f 5 )U(2)n ds u f 3' . ')n.ds (14a)

If we now recall the definitions of S and S , and the boundary conditions
0- u

(9b), (9c), (10b), (10c), and substituting all these into equation (11), we

obtain finally

fPX l u 1 dv + T. . ds+ .. . )n.ds
-- S - -- -1 -i 3

--i Hi- -ij -i
T- U

This is a general reciprocal relation in the Laplace transformation form.

It is of the same form as Betti's reciprocal relation in elastostatics.

Since the inverse transform of the product of two functions is the

convolution of the inverses, we obtain

f ff1 ,,fV Jo P (xi(, t - T)u. (X, T)dTdv + jS JoT .(X, t - T)u.i (x, idrds

+ f J 1)(X, t - T)w( 2 ) (x, T)n.dTdsf"i Jo, -j i

u

tp(X)Xz)(X, t - T)U((X, T)dTdv + J .fT(2X, t - T)u (x, T)dTds

+ a' (  
t - T)n.dTds (16)

U

This is the general reciprocal theorem for elasto-kinetics. Whether the

material is viscoelastic or purely elastic makes no difference in the final

result. Note that this result holds for variable density p(x 1 , x , x 3 ) and

nonhomogeneous material properties.
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IV. GENERALIZATION TO INFINITE REGION

A generalization of the above result to an infinite or semi-infinite

region is possible. Since a finite wave speed exists there always exists

a boundary surface at any finite t -0 which is yet uninfluenced by the

loading initiated at t = 0. Let S be such a surface. Then w. = 0 on Su 1 u

and the remainder of the equation holds without question.

V. SPECIFICATION AND APPLICATIONS

Space-time Separable Body Forces, Surface Tractions, and Displacements

If

xMl =--H) )(x) g(t) X(2) =- =(2)(

T = P ' (x) g(t) T~2 - Pi 2 (x)g(t)

w! ) = wlM (x)g(t) w(2 = W.( x)g(t)

then equation (15) can be written, on cancelling (g(t)) from every term, as

(v) (2) ....
P ' 1 U. 2 dv + P.U d s + W. (T. . n.d s

-- i -1 is -11J
a' u

-,(2)u( )dv + (2) u(1)ds + w(1)(2)n'ds
= -1-' JSi i -- -ij 3

(Y U

The inverse transformation gives

u.M () v+ ~(l)( 2 ) r (2) (1)2

-(x(1)U(2 t)dv + (xt)ds + S W ° i. (x,t)n.ds = 1\
V 1__ 1 1 13 3 s i i

ff U

or

( 2 ) v tFu'M) (2) (xt) (1)

Jv PXi (X,tui (x,tdv+fs Ti(Xt)u (x,t)dS+s ) (x,t)nds
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where 1\ indicates the same expression as on the left-hand side except

that the superscripts (1) and (2) are interchanged. Graffi's well-known

formula results if w ) w(2) - 0 on S
1 u

Forces Applied at Different Times

Graffi also gives the following case. If

X!1) = --,(i (2) = _,(2)(x g t

X - )(x)g(t - T 2 (x)g(t - T2

V( 1) (o 1)( v(2) (2

T = (x)g(t - T1 1  . = P i)(x)g(t - T 2 )1 1 1 1

W ( 1)
. = 0 (2) 0
11

then equation (15) becomes, on cancelling, 3(g(t) Is),

I / )-sT 1r (1) sTl()d 2
JvP ji e .j)dv + i e . 1

The inverse transform gives

1--i( )ui  )(x, t - Tl)dv + f _1 (x)u( 2 )(x, t - )ds
(3-

fV L '-(2 x u( )( f S ( 1. (1(i "  d

C FPrce (x )u i (x , t - T )dv + i2) (x )u 1 ) - T d s

Concentrated Forces

If the loading consists of concentrated loads f1) and f~) acting at

points pl, p2 respectively, we may consider P -'i or P as suitable delta

function and obtain at once

f(1)(P )u(2) (p 1 , t - T 1 )= f ( 2 )u () P2 t( - T 2 )
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or, if T 1 =T 2

1)) f(2), (1)
i (i P 2 )uil(p 2,t)

This is the extension of the conventional elastostatic Betti-Rayleigh

reciprocal relation to kinetics.

Impulsive and Traveling Concentrated Forces

Let an impulsive concentrated force act at a point p,

PxM )= f( 1 )6(p l)b(t)

and a concentrated force f(2) be applied at the origin at t = 0 and thereafter
1

moved along the x I axis at uniform speed U

-X2 f(246(t - 166(x)

No other surface loading or displacement is imposed. Then equation (16)

gives

f( 1) (2),
i u (P1 l

2) ij rt T x l '  i( ,Td

- 8f6(x2 )6(x )dx dx2 dx< o( - -J.)u i ( x 2x 3xt - T)dT

and therefore

xI

f( 1)u 2) (p,)t) f I T) U ux 10,0, t -  dx
i -1iJco ikl

If U.) xi 0,0,t - (x/U)] is known, then u. 2 ) (p, t) can be found from

the above equation.

Suddenly Started Line Load Over an Elastic Half-Space

The steady-state solution of the problem of a line load traveling at

constant speed over an elastic half-space (a two-dimensional problem)

was first solved by Sneddon (Reference 20) and later by Cole and Huth
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(Reference 8) by means of Fourier transformation and by analytic functions

of a complex variable. A singularity was found if the load travels at the

Rayleigh wave speed of the medium. To examine this singularity Ang

(Reference 1) considered the problem of suddenly started line load. Now

according to the reciprocal theorem Ang's problem can be solved by one

integration of the solution of Lamb's problem: the impulsive loading at

one point (not traveling) inside a two-dimensional half-space. Only the

surface displacement due to the point loading needs to be known.

~U

*,"f (2%) 6Wf i( 1) 8( x-u0)

LAMB'S PROBLEM ANG'S PROBLEM

Figure 1. Illustration of the Loading in Lamb's
and Ang's Problems

Suddenly Started Point Load Over an Elastic Half-Space

The corresponding three-dimensional problem of a concentrated load

suddenly applied at a point on the surface of an elastic half-space and

thereafter moved at a constant velocity U in the x-direction has not yet

been solved. However, from the reciprocal theorem named about, it

becomes apparent that the solution to this problem can be obtained by an

integration of Pekeris' solution to a suddenly applied vertical load and

Chao's solution to a suddenly applied horizontal load at a given point in

an elastic half-space.
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